REGISION INTERNATIONAL INTERNA

Custom Solutions

A Inspection

🕵 Repair

Calibration

🚫 Equipment

MSI Viking is your single-source comprehensive provider of precision metrology systems, services, and custom engineered solutions. We represent more than 100 of the world's leaders in precision measuring instruments, gaging, and process automation. This means providing the solutions you need rather than a limited handful of options.

In addition to precision measurement product sales and support, we are a leading provider of A2LA ISO 17025 accredited lab and on-site calibration and inspection services, and repair services. Our team of experts can also deliver custom engineered solutions leveraging advanced automation and control systems, machine vision, and robotic technologies.

MSI Viking is committed to understanding your needs and providing innovative, practical, on-budget solutions. Turn to MSI Viking for the most complete range of options, answers and expertise.

Because we truly are Your Total Metrology Solution.

How Big is a Micron? (µm)

1 μ m = 1 Millionth of 1 Meter 1 μ m = 40 Millionths of 1 Inch

Chart artwork compliments of Zeiss

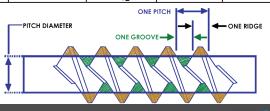
Standard Reference Chart

Standard English Terminology in Terms of an Inch
1.0 = One Inch
0.5 = One half of an Inch
0.100 = One Hundredth of an inch
0.001 = One thousandth of an inch
0.0001 = One ten thousandth of an inch or "a tenth"
0.00001 = Ten Millionths of an Inch
0.000001 = One Millionth of an Inch

Metric Terminology in Terms of a Millimeter
1.0 = One Millimeter
0.1 = 100 Microns
0.01 = 10 Microns
0.001 = 1 Micron

Common Conversion Factors
1" = 25.4mm
1mm = .03937"

Dimensional Measuring Instruments


Cylindrical and Tapered Plug, Ring and Thread Gages

	COMMON SERIES THREADS - UN								
Threads Per Inch & Series									
Nominal	Size inch	Basic Major	Coarse	Fine	Extra Fine				
Primary	Secondary	Diameter	UNC	UNF	UNEF				
#0		0.0600		80					
	#1	0.0730	64	72					
#2		0.0860	56	64					
	#3	0.0990	48	56					
#4		0.1120	40	48					
#5		0.1250	40	44					
#6		0.1380	32	40					
#8		0.1640	32	36					
#10		0.1900	24	32					
	#12	0.2160	24	28	32				
1/4		0.2500	20	28	32				
5/16		0.3125	18	24	32				
3/8		0.3750	16	24	32				
7/16		0.4375	14	20	28				
1/2		0.5000	13	20	28				
⁹ /16		0.5625	12	18	24				
3/8		0.6250	11	18	24				
	11/16	0.6875			24				
3/4		0.7500	10	16	20				
	13/16	0.8125			20				
7/8		0.8750	9	14	20				
	15/16	0.9375			20				
1		1.0000	8	12	18				
	11/16	1.0625			18				
11/8		1.1250	7	12	18				
	1 ³ /16	1.1875			18				
11/4		1.2500	7	12	18				
	1 ⁵ /16	1.3125			18				
1 ³ /8		1.3750	6	12	18				
	17/16	1.4375			18				
11/2		1.5000	6	12	18				
	1 9/16	1.5625			18				
1 5/8		1.6250			18				
	1 11/16	1.6875			18				
1 3/4		1.7500	5						
	1 ¹³ /16	1.8125							
17/8		1.8750							
	1 ^{15/16}	1.9375							
2		2.0000	41/2						

PITCH DIAMETER: The Diameter of an imaginary Cylinder passing through Thread Profile at such points that: Width of the Ridge = Width of the Groove

Geometric Tolerancing Reference Chart [ANSI/AMSE Y14.5M]*											
			Can be c	pplied to	Can affect	Datum	Can use	Can use	Can be affected	Can be affected	Can use
Type of Tolerance	Geometric Characteristic	Symbol	Feature (surface)	Feature of size	worst case boundary	reference used	©or ⊗ modifier	modifier	by a bonus tolerance	by a shift tolerance	P modifier
	Straightness		Yes	Yes	Yes*	No	Yes*	No	Yes♦	No	No
Form	Flatness	\Box	Yes	No	No	No	No	No	No	No	No
FOIT	Circularity	\bigcirc	Yes	No	No	No	No	No	No	No	No
	Cylindricity	\mathcal{O}	Yes	No	No	No	No	No	No	No	No
	Perpendicularity		Yes	Yes	Yes*	Yes	Yes*	Yes*	Yes♦	Yes†	Yes
Orientation	Angularity	\triangleleft	Yes	Yes	Yes*	Yes	Yes*	Yes*	Yes♦	Yes†	Yes
	Parallelism	//	Yes	Yes	Yes*	Yes	Yes*	Yes*	Yes♦	Yes†	No
	Positional Tolerance	\oplus	No	Yes	Yes	Yes	Yes	No	Yes♦	Yes†	No
Location	Concentricity	\bigcirc	No	Yes	Yes	Yes	No	No	No	No	No
	Symmetry	║	No	Yes	Yes	Yes	No	No	No	No	No
Duncut	Circular Runout	1	Yes	Yes	Yes	Yes	No	No	No	No	No
Runout	Total Runout		Yes	Yes	Yes	Yes	No	No	No	No	No
Profile	Profile of a Line	\bigcirc	Yes	No	No	Yes**	Yes‡	No	No	Yes†	No
Profile	Profile of a Surface	\bigcirc	Yes	No	No	Yes**	Yes‡	Yes*	No	Yes†	No

* When applied to a feature-of-size

** Can also be used as a form control without a datum reference

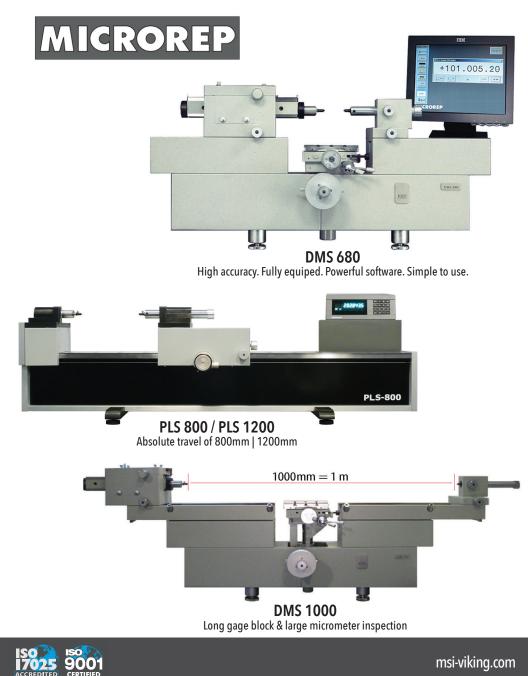
† When a datum feature-of-size is referenced with the MMC modifier

• When an MMC modifier is used

• When applied to a surface

‡ For a datum ref only

[*] Reference Only



	METRIC to INCH CONVERSION TABLE									
Metric	Inch	Metric	Inch	Metric	Inch	Metric	Inch			
0.01	0.00039	0.51	0.02008	1	0.03937	51	2.00787			
0.02	0.00079	0.52	0.02047	2	0.07874	52	2.04724			
0.03	0.00118	0.53	0.02087	3	0.11811	53	2.08661			
0.04	0.00157	0.54	0.02126	4	0.15748	54	2.12598			
0.05	0.00197	0.55	0.02165	5	0.19685	55	2.16535			
0.06	0.00236	0.56	0.02205	6	0.23622	56	2.20472			
0.07	0.00276	0.57	0.02244	7	0.27559	57	2.24409			
0.08	0.00315	0.58	0.02283	8	0.31496	58	2.28346			
0.09	0.00354	0.59	0.02323	9	0.35433	59	2.32283			
0.10	0.00394	0.6	0.02362	10	0.3937	60	2.3622			
0.11	0.00433	0.61	0.02402	11	0.43307	61	2.40157			
0.12	0.00472	0.62	0.02441	12	0.47244	62	2.44094			
0.13	0.00512	0.63	0.0248	13	0.51181	63	2.48031			
0.14	0.00551	0.64	0.0252	14	0.55118	64	2.51968			
0.15	0.00591	0.65	0.02559	15	0.59055	65	2.55905			
0.16	0.0063	0.66	0.02598	16	0.62992	66	2.59842			
0.17	0.00669	0.67	0.02638	17	0.66929	67	2.63779			
0.18	0.00709	0.68	0.02677	18	0.70866	68	2.67716			
0.19	0.00748	0.69	0.02717	19	0.74803	69	2.71653			
0.20	0.00787	0.7	0.02756	20	0.7874	70	2.7559			
0.21	0.00827	0.71	0.02795	21	0.82677	71	2.79527			
0.22	0.00866	0.72	0.02835	22	0.86614	72	2.83464			
0.23	0.00906	0.73	0.02874	23	0.90551	73	2.87401			
0.24	0.00945	0.74	0.02913	24	0.94488	74	2.91338			
0.25	0.00984	0.75	0.02953	25	0.98425	75	2.95275			
0.26	0.01024	0.76	0.02992	26	1.02362	76	2.99212			
0.27	0.01063	0.77	0.03032	27	1.06299	77	3.03149			
0.28	0.01102	0.78	0.03071	28	1.10236	78	3.07086			
0.29	0.01142	0.79	0.0311	29	1.14173	79	3.11023			
0.30	0.01181	0.8	0.0315	30	1.1811	80	3.1496			
0.31	0.0122	0.81	0.03189	31	1.22047	81	3.18897			
0.32	0.0126	0.82	0.03228	32	1.25984	82	3.22834			
0.33	0.01299	0.83	0.03268	33	1.29921	83	3.26771			
0.34	0.01339	0.84	0.03307	34	1.33858	84	3.30708			
0.35	0.01378	0.85	0.03346	35	1.37795	85	3.34645			
0.36	0.01417	0.86	0.03386	36	1.41732	86	3.38582			
0.37	0.01457	0.87	0.03425	37	1.45669	87	3.42519			
0.38	0.01496	0.88	0.03465	38	1.49606	88	3.46456			
0.39	0.01535	0.89	0.03504	39	1.53543	89	3.50393			
0.40	0.01575	0.90	0.03543	40	1.5748	90	3.5433			
0.41	0.01614	0.91	0.03583	41	1.61417	91	3.58267			
0.42	0.01654	0.92	0.03622	42	1.65354	92	3.62201			
0.43	0.01693	0.93	0.03661	43	1.69291	93	3.66141			
0.44	0.01732	0.94	0.03701	44	1.73228	94	3.70078			
0.45	0.01772	0.95	0.0374	45	1.77165	95	3.74015			
0.46	0.01811	0.96	0.0378	46	1.81102	96	3.77952			
0.47	0.0185	0.97	0.03819	47	1.85039	97	3.81889			
0.48	0.0189	0.98	0.03858	48	1.88976	98	3.85826			
0.49	0.01929	0.99	0.03898	49	1.92913	99	3.89763			
0.5	0.01969	1.00	0.03937	50	1.9685	100	3.937			

Universal Length Measuring Machines

Gagemaker's Tolerance Chart [ANSI/AMSE B89.1.5]* INCH									
Diameter Range Above-Including	ххх	XX	Х	Y	Z	ZZ			
.010"825"	.000010"	.000020''	.000040''	.000070''	.0001"	.0002''			
.825"-1.510"	.000015"	.000030"	.000060''	.000090''	.00012"	.00024''			
1.510"-2.510"	.000020''	.000040"	.000080''	.00012"	.00016"	.00032"			
2.510"-4.510"	.000025"	.000050''	.0001"	.00015"	.0002''	.0004''			
4.510"-6.510"	.000033''	.000065"	.00013"	.00019"	.00025"	.0005''			
6.510"-9.010"	.000040''	.000080''	.00016"	.00024"	.00032"	.00064''			
9.010"-12.010"	.000050''	.0001"	.0002''	.0003''	.0004''	.0008''			

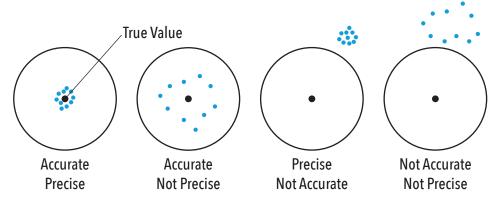
Gagemaker's Tolerance Chart [ANSI/AMSE B89.1.5]* METRIC									
Diameter Range Above-Including	ххх	ХХ	х	Y	Z	ZZ			
.254mm-20.96mm	.00025mm	.00051mm	.00102mm	.00178mm	.00254mm	.00508mm			
20.96mm-38.35mm	.00038mm	.00076mm	.00152mm	.00229mm	.00305mm	.00610mm			
38.35mm-63.75mm	.00051mm	.00102mm	.00203mm	.00305mm	.00406mm	.00813mm			
63.75mm-114.55mm	.00064mm	.00127mm	.00254mm	.00381mm	.00508mm	.01016mm			
114.55mm-165.35mm	.00084mm	.00165mm	.00330mm	.00483mm	.00635mm	.01270mm			
165.35mm-228.85mm	.00102mm	.00203mm	.00406mm	.00610mm	.00813mm	.01626mm			
228.85mm-305.05mm	.00127mm	.00254mm	.00508mm	.00762mm	.01016mm	.02032mm			

*Reference Only

Gage Reproducibility & Repeatability Study GR&R Chart*

				INCH				
Part	2 TR	IALS	3 TR	IALS	5 TR	IALS	ANG	AVC
Tolerance INCH	10%	20%	10%	20%	10%	20%	10%	20%
0.0001	0.000002	0.000004	0.000003	0.000006	0.000005	0.00001	0.000003	0.000006
0.0002	0.000004	0.000008	0.000007	0.000014	0.000009	0.000018	0.000007	0.000014
0.0003	0.000007	0.000014	0.000009	0.000018	0.000014	0.000028	0.000009	0.000018
0.0004	0.000009	0.000018	0.000013	0.000026	0.000018	0.000036	0.000013	0.000026
0.0005	0.000011	0.000022	0.000016	0.000032	0.000023	0.000046	0.000016	0.000032
0.0006	0.000013	0.000026	0.00002	0.00004	0.000027	0.000054	0.00002	0.00004
0.0008	0.000018	0.000036	0.000026	0.000052	0.000036	0.000072	0.000026	0.000052
0.001	0.000022	0.000044	0.000033	0.000066	0.000045	0.00009	0.000032	0.000064
0.002	0.000044	0.000088	0.000066	0.000132	0.000091	0.000182	0.000065	0.00013
0.003	0.000066	0.000132	0.00098	0.000196	0.000136	0.000272	0.000096	0.000192
0.004	0.000088	0.000176	0.000131	0.000262	0.000181	0.000362	0.000128	0.000256
0.005	0.00011	0.00022	0.000164	0.000328	0.000226	0.000452	0.000161	0.000322
METRIC								
				METRIC				
Part	2 TR	IALS	3 TR		5 TR	IALS	AN	OVA
Part Tolerance MM	2 TR 10%	IALS 20%	3 TR 10%		5 TR 10%	IALS 20%	AN(10%	DVA 20%
Tolerance				IALS				20%
Tolerance MM	10%	20%	10%	IALS 20%	10%	20%	10%	20%
Tolerance MM 0.0025	10% 0.00006	20%	10% 0.00008	IALS 20% 0.00016	10%	20%	10% 0.00008	20% 0.00016 0.00032
Tolerance MM 0.0025 0.005	10% 0.00006 0.00011	20% 0.00012 0.00022	10% 0.00008 0.00017	IALS 20% 0.00016 0.00034	10% 0.00011 0.00023	20% 0.00022 0.00046	10% 0.00008 0.00016	20% 0.00016 0.00032 0.00048
Tolerance MM 0.0025 0.005 0.0076	10% 0.00006 0.00011 0.00017	20% 0.00012 0.00022 0.00034	10% 0.00008 0.00017 0.00025	IALS 20% 0.00016 0.00034 0.0005	10% 0.00011 0.00023 0.00034	20% 0.00022 0.00046 0.00068	10% 0.00008 0.00016 0.00024	20% 0.00016 0.00032 0.00048 0.00064
Tolerance MM 0.0025 0.005 0.0076 0.01	10% 0.00006 0.00011 0.00017 0.00022	20% 0.00012 0.00022 0.00034 0.00044	10% 0.00008 0.00017 0.00025 0.00033	IALS 20% 0.00016 0.00034 0.0005 0.00066	10% 0.00011 0.00023 0.00034 0.00045	20% 0.00022 0.00046 0.00068 0.0009	10% 0.00008 0.00016 0.00024 0.00032	20% 0.00016 0.00032 0.00048 0.00064 0.00084
Tolerance MM 0.0025 0.005 0.0076 0.01 0.013	10% 0.00006 0.00011 0.00017 0.00022 0.00029	20% 0.00012 0.00022 0.00034 0.00044 0.00058	10% 0.00008 0.00017 0.00025 0.00033 0.00043	IALS 20% 0.00016 0.00034 0.0005 0.00066 0.00086	10% 0.00011 0.00023 0.00034 0.00045 0.00059	20% 0.00022 0.00046 0.00068 0.0009 0.00118	10% 0.00008 0.00016 0.00024 0.00032 0.00042	20% 0.00016 0.00032 0.00048 0.00064 0.00084 0.00084
Tolerance MM 0.0025 0.005 0.0076 0.01 0.013 0.015	10% 0.00006 0.00011 0.00017 0.00022 0.00029 0.00033	20% 0.00012 0.00022 0.00034 0.00044 0.00058 0.00066	10% 0.00008 0.00017 0.00025 0.00033 0.00043 0.0005	IALS 20% 0.00016 0.00034 0.0005 0.00066 0.00086 0.0001	10% 0.00011 0.00023 0.00034 0.00045 0.00059 0.00068	20% 0.00022 0.00046 0.00068 0.0009 0.00118 0.00136	10% 0.00008 0.00016 0.00024 0.00032 0.00042 0.00048	20% 0.00016 0.00032 0.00064 0.00064 0.00084 0.00096 0.00128
Tolerance MM 0.0025 0.005 0.0076 0.01 0.013 0.015 0.02	10% 0.00006 0.00011 0.00017 0.00022 0.00029 0.00033 0.00044	20% 0.00012 0.00022 0.00034 0.00044 0.00058 0.00066 0.00088	10% 0.00008 0.00017 0.00025 0.00033 0.00043 0.0005 0.00066	ALS 20% 0.00016 0.00034 0.0005 0.00066 0.00086 0.0011 0.00132	10% 0.00011 0.00023 0.00034 0.00045 0.00059 0.00068 0.0009	20% 0.00022 0.00046 0.0009 0.00118 0.00136 0.0018	10% 0.0008 0.00016 0.00024 0.00032 0.00042 0.00048 0.00064	20% 0.00016 0.00032 0.00048 0.00064 0.00084 0.00096 0.00162
Tolerance MM 0.0025 0.005 0.0076 0.01 0.013 0.015 0.02 0.025	10% 0.00006 0.00011 0.00017 0.00022 0.00029 0.00033 0.00044 0.00055	20% 0.00012 0.00022 0.00034 0.00044 0.00058 0.00066 0.00088 0.0011	10% 0.00017 0.00025 0.00033 0.00043 0.0005 0.00066 0.00083	ALS 20% 0.00016 0.00034 0.0005 0.00066 0.00086 0.00132 0.00166	10% 0.00011 0.00023 0.00034 0.00045 0.00059 0.00068 0.0009 0.00113	20% 0.00022 0.00046 0.00068 0.0009 0.00118 0.00136 0.0018 0.00226	10% 0.00008 0.00016 0.00024 0.00032 0.00042 0.00048 0.00064 0.00081	20% 0.00016 0.00032 0.00064 0.00084 0.00096 0.00128 0.00162 0.00162
Tolerance MM 0.0025 0.005 0.0076 0.011 0.013 0.015 0.02 0.025 0.05	10% 0.00006 0.00011 0.00022 0.00029 0.00033 0.00044 0.00055 0.0011	20% 0.00012 0.00022 0.00034 0.00044 0.00058 0.00066 0.00088 0.0011 0.0022	10% 0.00008 0.00017 0.00025 0.00033 0.00043 0.00043 0.00066 0.00083 0.00165	ALS 20% 0.00016 0.00034 0.0005 0.00066 0.00086 0.00132 0.00166 0.0033	10% 0.00011 0.00023 0.00034 0.00045 0.00059 0.00068 0.0009 0.00113 0.00225	20% 0.00022 0.00046 0.0009 0.00118 0.00136 0.00136 0.0018 0.00226 0.0045	10% 0.00008 0.00016 0.00032 0.00042 0.00048 0.00064 0.00081 0.00016	

*Reference Only



Measurement System Characterization

	Location (Average Measurement Value vs. Actual Value)
Stability	The ability of a measurement system to produce the same values over time when measuring the same sample.
Accuracy	A measure of the distance between the average value of the measurement of a part and the True, certified, or assigned value of a part. Also referred to as bias.
Linearity	The consistency of accuracy (bias) over the range of measurement; a slope of one (unity) between mea- sured and true value is perfect.
	Variation (Spread of Measurement Values - Precision)
Repeatability	The consistency of a single appraiser to measure the same part multiple times with the same measure- ment system; it is related to the standard deviation of the measured values.
Reproducibility	Assesses whether different appraisers can measure the same part/sample with the same measurement device and get the same value.
Resolution	The ability of a measurement system to discriminate between measurement values. The consistency of different appraisers in measuring the same part with the same measurement system; it is related to standard deviation of the distribution of appraiser averages.

The diagram below illustrates the difference between the terms "Accuracy" and "Precision". Efforts to improve measurement system quality are aimed at improving both accuracy and precision.

Requirements

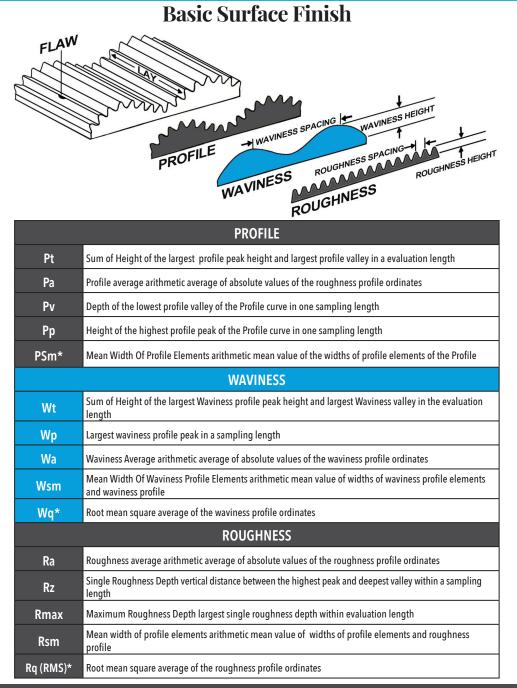
Following are general requirements of all capable measurement systems:

- · Statistical stability over time.
- · Variability small compared to the process variability.
- · Variability small compared to the specification limits (tolerance).

• The resolution, or discrimination of the measurement device must be small relative to the smaller of either the specification tolerance or the process spread (variation). As a rule of thumb, the measurement system should have resolution of at least 1/10th the smaller of either the specification tolerance or the process spread. If the resolution is not fine enough, process variability will not be recognized by the measurement system, thus blunting its effectiveness.

Definitions courtesy of Raytheon

MSI VIKING



3D Scanning Systems

HARDNESS CONVERSION CHART

	Rock	well			Superficial		Vickers	Кпоор	Brinell	Tensile Strength
С	Α	D	G	15-N	30-N	45-N	HV	HK	HB	ksi
150 kg Brale	60 kg Brale	100 kg Brale	150 kg 1/16" Ball	15 kg N Brale	30 kg N Brale	45 kg N Brale	Vickers 10 kg	500 gm & over	3000 kg 10-mm Ball	1000 psi
80	92	86.5	96.5	92	87	1865			:	:
79	91.5	85.5	96.3	91.5	86.5	1787				
78 77	91 90.5	84.5 84	N/A	96 95.8	91 90.5	85.5 84.5	1710 1633			
76	90.5	83		95.5	90.5	83.5	1556		<u> </u>	
75	89.5	82.5		95.3	89	82.5	1478		E E	
74	89	81.5		95	88.5	81.5	1400		NOTE	
73	88.5	81		94.8	88	80.5	1323		See	2 1
72	88 87	80 79.5		94.5 94.3	87 86.5	79.5 78.5	1245 1160			ÍOTE ±
70	86.5	78.5		94.3	86	76.5	1076	972		
69	86	78	<pre></pre>	93.5	85	76.5	1070	946		e Se
68	85.6	76.9	z ;	93.2	84.4	75.4	940	920		
67	85	76.1		92.9	83.6	74.2	900	895	•	
66	84.5	75.4		92.5	82.8	73.3	865	870	N/A	
65 64	83.9 83.4	74.5 73.8		92.2 91.8	81.9 81.1	72	832 800	846 822	739 722	
63	82.8	73.0		91.4	80.1	69.9	772	799	722	
62	82.3	72.2		91.1	79.3	68.8	746	776	688	
61	81.8	71.5		90.7	78.4	67.7	720	754	670	•
60	81.2	70.7	N/A	90.2	77.5	66.6	697	732	654	N/A
59	80.7	69.9	351	89.8	76.6	65.5	674	710	634	351
58 57	80.1 79.6	69.2 68.5	338 325	89.3 88.9	75.7 74.8	64.3 63.2	653 633	690 670	615 595	338 325
56	77.0	67.7	313	88.3	73.9	62	613	650	577	313
55	78.5	66.9	301	87.9	73	60.9	595	630	560	301
54	78	66.1	292	87.4	72	59.8	577	612	543	292
53	77.4	65.4	283	86.9	71.2	58.8	560	594	525	283
52 51	76.8 76.3	64.6 63.8	273 264	86.4 85.9	70.2 69.4	57.4 56.1	544 528	576 558	512 496	273 264
50	76.3	63.8	264	85.5	69.4	55	528	558	496	264
49	75.2	62.1	246	85	67.6	53.8	498	526	469	246
48	74.7	61.4	N/A	84.5	66.7	52.5	484	510	455	238
47	74.1	60.8	229	83.9	65.8	51.4	471	495	443	229
46	73.6	60	221	83.5	64.8	50.3	458	480	432	221
45 44	73.1 72.5	59.2 58.5	215 208	83 82.5	64 63.1	49 47.8	446 434	466 452	421 409	215 208
44	72.5	57.7	208	82	62.2	47.0	434	432	409	208
42	71.5	56.9	194	81.5	61.3	45.5	412	426	390	194
41	70.9	56.2	188	80.9	60.4	44.3	402	414	381	188
40	70.4	55.4	182	80.4	59.5	43.1	392	402	371	182
39	69.9	54.6	177	79.9	58.6	41.9	382	391	362	177
38 37	69.4 68.9	53.8 53.1	171 166	79.4 78.8	57.7 56.8	40.8 39.6	372 363	380 370	353 344	171 166
36	68.4	52.3	160	78.3	55.9	37.6	353	360	336	161
35	67.9	51.5	156	77.7	55	37.2	345	351	327	156
34	67.4	50.8	152	77.2	54.2	36.1	336	342	319	152
33	66.8	50	149	76.6	53.3	34.9	327	334	311	149
32 31	66.3 65.8	49.2 48.4	146 N/A	76.1 75.6	52.1 51.3	33.7 32.5	318 310	326 318	301 294	146 141
30	65.3	40.4	N/A 92	75.0	51.3	32.5	302	310	294	141
29	64.6	47	91	74.5	49.5	30.1	294	304	200	135
28	64.3	46.1	90	73.9	48.6	28.9	286	297	271	131
27	63.8	45.2	89	73.3	47.7	27.8	279	290	264	128
26	63.3	44.6	88	72.8	46.8	26.7	272	284	258	125
25 24	62.8 62.4	43.8 43.1	87 86	72.2 71.6	45.9 45	25.5 24.3	266 260	278 272	253 247	123 119
24	62.4	43.1	84.5	71.0	45	24.3	254	266	247	117
20	61.5	41.6	83.5	70.5	43.2	20.1	248	261	237	115
21	61	40.9	82.5	69.9	42.3	20.7	243	256	231	112
20	60.5	40.1	81	69.4	41.5	19.6	238	251	226	110

NOTE #1: A 10mm steel ball was used for 450 BHN and below; a 10mm carbide ball was used above 450 BHN.

NOTE #2: The tensile strength relation to hardness is inexact, even for steel unless it is determined for a specific material.

Force Me	asurem	ent
Element or Alloy	GF	LBF
Actinium	10	10070
Aluminum	8.5	8525
Anitmony	6.68	6680
Babbitt	7.27	7270
Barium	3.62	3595
Beryllium	1.85	1850
Bismuth	9.79	9790
Cadmium	8.69	8690
Caesium	1.87	1870
Calcium	1.54	1540
Cerium	6.77	6770
Cesium	1.93	1930
Chromium	7.15	7150
Cobalt	8.86	8860
Constantan	8.9	8900
Columbium	8.55	8550
Copper	8.96	8960
Cupronickel	8.9	8900
Duralumin	2.78	2780
Dysprosium	8.55	8550
Erbium	9.07	9070
Europium	5.24	5240
Galdolinium	7.90	7900
Gallium	5.91	5910
Germanium	5.3	5300
Gold	19.3	19300
Hafnium	13.3	13300
Hatelloy	9.25	9250
Holmium	8.80	8800
Indium	7.31	7310
Inconel	8.5	8500
Incoloy	8.03	8003
Iridium	22.5	22500
Iron	7.87	7870

Force Measurement							
Element or Alloy	GF	LBF					
Lanthanum	6.15	6150					
Lead	11.3	11300					
Lithium	.53	530					
Lutetium	9.84	9840					
Magnesium	1.74	1740					
Manganse	7.3	7300					
Manganin	8.55	8550					
Mercury	13.53	13530					
Molybdenum	10.2	10200					
Neodymium	7.01	7010					
Neptunium	20.2	20200					
Nichrome	8.45	8450					
Nickel	8.90	8900					
Nickeline	8.7	8700					
Nimonic	8.1	8100					
Niobium	8.57	8570					
Osmium	22.59	22590					
Palladium	12.0	12000					
Platinum	21.5	21500					
Plutonium	19.7	19700					
Polonium	9.20	9200					
Potassium	.89	890					
Praseodymium	6.77	6770					
Promethium	7.26	7260					
Protactinium	15.4	15400					
Radium							
Red Brass	8.75						
Rhenium	20.8	20800					
Rhodium	12.4	12400					
Rubidium	1.53	15300					
Ruthenium	12.1	12100					
Samarium	7.52	7520					
Scandium	2.99	2990					
Silver	10.5	10500					

Force Measurement							
Element or Alloy	GF	LBF					
Sodium	.97	970					
Steel	7.86	7860					
Strontium	2.64	2640					
Tantalum	16.4	16400					
Technetium	11						
Terbium	8.23	8230					
Thallium	11.8	11800					
Thorium	11.7	11700					
Thulium	9.32	9320					
Tin	7.26	7260					
Titanium	4.51	4510					
Tungsten	19.3	19300					
Uranium	19.1	19100					
Vanadium	6.0	6000					
White Metal	7.05	7050					
Wrought Iron	7.74	7740					
Yellow Brass	8.47	8470					
Ytterbium	6.90	6900					
Yttrium	4.47	4470					
Zinc	7.14	7140					
Zirconium	6.52	6520					

Sample Preparation

Torque Measurement										
IN-OZ	G-CM	IN-LB	IN-LB		FT-LB		KG-M		N-M	
48	345	6	3		0.25		0.03458		0.339	
192	1383	D	12		1		0.1383		1.356	
800	5760	D	50		4.167		0.5763		5.65	
1600	11520	0	100		8.334		1.1526		11.3	
3200	23040	0	200 16.6		16.668		2.3052		22.6	
Torque Conversion Multipliers										
	IN-OZ	G-CM	I	N-LB	FT-LI	В	KG-M		N-M	
in-oz	1	72.01		0.0625	0.005208 0.0007203		3	0.007063		
g-cm	0.01389	1	0.	.000868	0.00007233 0.00001		1	0.00009808		
in-lb	16	1152		1		8333 0.0115		3	0.113	
ft-lb	192	3456	12		1		0.1383		1.356	
kg-m	1388	99960		86.77		7.231		1	9.805	
n-m	141.6	10200		8.85	0.1	7375	0.10	12	1	

Force Measurement										
OZF	GF	LBF	LBF KGF				N			
16	45	3.6	1		0.4536		4.448			
80	22	268	5		2.268	22.24				
160	45	536	10		4.536	44.48				
400	113	340	25		11.34		111.2			
800	226	580	50		22.68		222.4			
1600	453	360	100		45.36		444.8			
3200	907	/20	200	90.72		889.6				
8000	2268	300	500		226.8		2224			
16000	4536	500	1000		453.6	4448				
Force Conversion Multipliers										
	OZF	GF	LB	F	KGF		N			
OZF	1	28.35		0.0625	0.028	335	0.278			
GF	0.03527	1	0.	002205	0.0	001	0.009806			
LBF	16	453.6		1	0.45	536	4.448			
KGF	35.27	1000		2.205		1	9.806			

102

3.597

0.2248

0.102

1

Ν

Form Parameter Tolerances

Straightness, ISO 1101

The tolerance zone is limited in the measuring plane by two parallel straight lines a distance *t* apart.

Concentricity/Coaxiality, ISO 1101

The tolerance zone is limited by a cylinder of diameter *t*, the axis of which coincides with the datum axis.

Flatness, ISO 1101

The tolerance zone is limited by two parallel planes a distance *t* apart.

Symmetry, ISO 1101

The tolerance zone is limited by two parallel planes a distance t apart and symmetrically disposed to the median plane with respect to the datum axis or datum plane.

Roundness, ISO 1101

The tolerance zone is limited in the measuring plane perpendicular to the axis by two concentric circles a distance t apart.

Parallelism, ISO 1101

The tolerance zone is limited in the measuring plane by two straight lines a distance *t* apart and parallel to the datum.

Cylindricity, ISO 1101

The tolerance zone is limited by two coaxial cylinders a distance *t* apart.

Perpendicularity, ISO 1101

The tolerance zone is limited in the measuring plane by two parallel, straight lines a distance t apart and perpendicular to the datum.

Angularity, ISO 1101

The tolerance zone is limited by two parallel planes a distance *t* apart and inclined at the specified angle to the surface.

Radial run-out, ISO 1101

The tolerance zone is limited in the measuring plane perpendicular to the axis by two concentric circles a distance t apart, the common center of which lies on the datum axis.

Position, ISO 1101

If the tolerance value is preceded by the sign, the tolerance zone is limited by a cylinder of diameter *t*, the axis of which is theoretically in the exact position of the toleranced line.

Total run-out, ISO 1101

The tolerance zone is limited by two parallel planes a distance *t* apart and perpendicular to the datum axis.

Profile any surface, ISO 1101

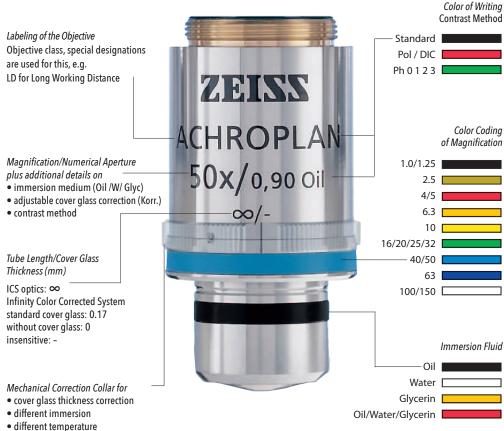
The tolerance zone is limited by two surfaces enveloping spheres of diameter *t*, the centres of which are situated on a surface having the true geometrical form.

Angularsector roundness, ISO 1101

The tolerance zone is limited in the measuring plane perpendicular to the axis by two concentric circles a distance apart. The measured circumference shall be contained in any angular sector t starting from the profile centre within the tolerance zone.

Shaft Measuring Systems

Optical measuring machine for turned and ground parts. Take measurements in a matter of seconds on a part profile directly on the shop floor.



Color Coding of Carl Zeiss Objectives

Maximum image information for the best possible result: in order to acquire meaningful images, choosing the right objective is a crucial criterion for success. To ensure reliable analysis, this applies to routine tasks as well as demanding high-end applications. The requirements of users always have one commonality – to achieve maximum resolution with extremely high contrast.

• adjusting an iris diaphragm

Chart artwork compliments of ZEISS

Light and Confocal Microscopes

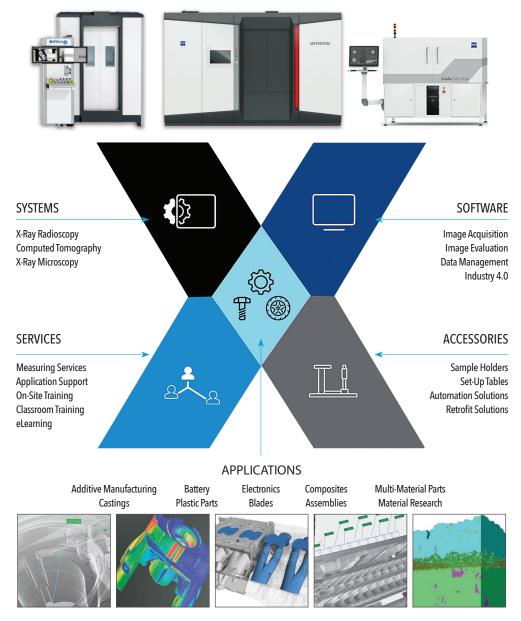
ZEISS is a highly respected manufacturer of microscopes offering systems for manufacturing and assembly in high tech industries, as well as exploration and processing of raw materials. Choose the ideal system for your tasks and applications from a broad spectrum of solutions.

Atomic Number Syr Na Atomi	87 Fr Francium 223.020	55 CS Cesium 132.905	37 Rb Rubidium 84.468	19 K Potassium 39.098	11 Na Sodium 22.990	3 Lithium 6.941	1 Hydrogen 1.008	1A 1A
mbol ame ic Mass					12 Magnesium 24.305		2A 2A	
Lanthanide Series Actinide Series	89-103	57-71		Scandium 44.956				
57 Lanthanum 138.905 89 89 80 Actinium 227,028	Rutherfordium [261]	72 Hf Hafnium 178.49	40 Zr Zirconium 91.224	22 Ti Titanium 47.867	1VB 4B			M
Certium 140.116 Thorium 232.038	105 Dubnium [262]	73 Ta Tantalum 180.948	41 Niobium 92.906	23 Vanadium 50.942	58 5 8			MSI (
59 Pr m Prasedymium 16 91 190 Pa Prasedymium 17 Prasedimium Protectinium Protectinium	Seaborgium [266]	74 Tungsten 183.84	42 Molybdenum 95.95	24 Chromium 51.996	68 8⊟		G	
Peodymium 144.243	Bohrium [264]							Per
Promethium Promethium	108 Hassium [269]	76 Osmium 190.23	44 Ruthenium 101.07	26 Fe Iron 55.845	≪ ∞			Periodic Table of Elements
Samarium 150.36 94 Plutonium Plutonium	109 Mt Meitnerium [268]	77 Ir Iridium 192.217	Rhodium 102.906	27 Cobalt 58.933	e }8 			Tab
S Europium 151.964 S Americium 243.061	DS Rg Darmstadtium Roentgenium ([269] [272]	78 Pt Platinum 195.085	46 Pd Palladium 106.42	28 Nickel 58.693	↓ 1			le of]
Gadolinium Gadolinium 157.25 96 Cunium 247.070	111 Rg Roentgenium [272]	79 Au Gold 196.967	47 Ag Silver 107.868	29 Cu Copper 63.546	1 a a			Elem
5 Tb Terbium Terbium 158.925 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Cn Coperniciun [277]	Mercury 200.592	Cadmium 112.411	Zinc 65.38	12 28			ents
98 Cf Californium 251,080	113 Ununtrium Ununtrium	81 T Thallium 204.383	49 In Indium 114.818	31 Gallium 69.723	Aluminum 26.982	5 Boron 10.811	13 3A	
Holmium 164,330 B Einsteinium [254]	114 Flerovium [289]	82 Pb Lead 207.2	50 Sn Tin 118.711		14 Silicon 28.086	6 Carbon 12.011	14 1VA 4A	
68 Erbium 100 Fermium 257.086	Ununpentium Ununpentium	83 Bi Bismuth 208.980	51 Sb Antimony 121.760	33 AS Arsenic 74.922	15 P Phosphorus 30.974	7 Nitrogen 14.007	15 VA 5A	
69 Tm Thuilium Thuilium 168: 394 169 169 169 169 169 169 169 169 169 169	116 LV Livermorium [298]	84 PO Polonium [208.982]	52 Telurium 127.6	34 Selenium 78.971	16 Sulfur 32.066	8 Oxygen 15.999	16 VIA 6A	
70 Yb Ytterbium 173.055 102 Nobelium 259.101	117 UUS Ununseptium unknown	85 At Astatine 209.987	53 I Iodine 126.904	35 Bromine 79.904	17 Chlorine 35.453	9 Fluorine 18.998	17 VIIA 7A	
71 Lutetium 1103 Lawrencium [262]	118 Ununoctium unknown	Radon 222.018	54 Xenon 131.294	36 Krypton 84.798	18 Argon 39.948	Neon 20.180	2 Helium 4.003	18 VIIIA 8A

Alkaline Earth Transition Metals Basic Metals Semimetals Metals

Alkali Metals

Nonmetals Halogenes


Noble Gases Lanthanides

Actinides

ZEISS Imaging Systems

Make the Invisible Visible

MSI Viking

Representing More than 100 of the World's Leading Metrology and Process Automation Companies

Air Gaging Solutions AG Davis/AA Gage AMS Gage ASI Datamyte* Barcor Gages* Beta LaserMike* Brown and Sharpe* Carbide Probes* CDI (Chicago Dial)* CDI Torque* Chatillon-Ametek* DW Fritz* Deltronic* Diatest Dorsey Metrology* **Dwyer Instruments** Dver Gage* Easy Metric* Edmunds Factory Systems* Fega* Flexbar Machine Corp* Fowler High Precision* Gedore **Glastonbury Southern Gage*** Heidenhain* Hemco Gages* **IAC Industries** IE&E Engineering Imada* **INNOVATEST*** Inspection Arsenal* InSize Instron

Johnson Gage* Kinetic Systems* Konica Minolta Laser Check Lavezzi/Tru-Pos LDI-Laser Design Leitech Instruments* Lloyd-Ametek* Mahr* Maya Gage Mark-10* Marposs* Mecmesin* Metkon* MetLogix* Metrios* Metro Air Metronics/QuadraCheck* Meyer Gage* Microrep* Microridge* Mitutovo* Mountz* Mueller Gages* NDC Technologies OASIS/George* Ohaus* Olympus* Omega* Palmer Wahl* Phase II+* PrymeFix* **Rayco Fixturing** Renishaw*

Don't see it? We have more...call us!

Renishaw Fixturing Solutions* Rotronic* Sensofar* Setco Shars Tool Shimpo* Size Control* Snap-On Industrial Tools* Solartron Metrology* SPI/Swiss Precision Inst.* Stahl Willie Tools L.S. Starrett* Starrett Metrology* Starrett-TruStone* Starrett-Webber* Stor-Loc* Stotz Struers Stuhr by CDV Corp Sturtevant Richmont Suburban Tool Metrology* Sun-Tec* **TESA Technologies*** Tohnichi* Trulok* **Universal Robot** Vermont Gage* VICIVision Western Gage* Williams Torque* Witte/Alufix* Zero Check ZEISS* Zoller*

*MSI Viking is a Master Distributor for these companies

Dimensional Calibration Services

Dimensional A2LA Accredited Calibration Services

Anemometers Angle Plates & Blocks **Bolt Protrusion Gages Bore Gages** Calipers Chamfer & Hole Check Gages **Crimping Tools** Depth Step Gages Durometers Dynamometers Feeler Gages **Force Gages** Gage Blocks Gapman Gages Glass Scales Gloss-Measure GO/NO-GO Gages Hand Tools Hardness Testers (Rockwell/Superficial & Brinell Knoop/Vickers) **Height Gages** Height Set Masters Indicators Kalmasters **Kinematic Viscosity** Laser Micrometers Length Standards Levels Load Cells (120,000lbs) IVDT Probes

Master Balls Master Discs Micrometers **Optical Flats** Pin Gages Plug Gages Pressure Calibrators Pressure Gauges Protractors Radius gages **Ring Gages** Roundness Testers Scales/Balances Sine Bars **Snap Gages** Spheres and Balls Squares Steel Rules/Tapes Stop Watches Surface Finish Testers Surface Finish Roughness Patches Surface Plates **Testing Sieves** Thread Wires Thread Gages **Torque Wrenches Torque Analyzers and Meters** Ultrasonic Thickness Meters Universal Measuring Machines Weights/Mass

...and much more. Don't see it? Call us!

Electronics Calibration Services

Ammeters Amplifiers **Analog Meters Battery Dischargers Chart/Strip Recorders** Clamp Meters (up to 550 Amps) **Conductivity Meters** Counters **Curve Tracers Current Probes** Data Loggers Decade Resistors/Boxes Electronic Loads **ESD** Testers Frequency Counters to 18GHz Freezers Function Generators Hygrometers Insulation Testers **IR under Temp Indicators** Light Meters Magnetic Flux Density (Gauss Meters)

Meggers Multifunction Calibrators Multimeters Oscillators Oscilloscopes Ovens Panel Meters **Power Supplies Pulse Generators** Radar Guns X-K Bands Safety Analyzers Sound Level Meters Tachometers Temperature Controllers **Temperature Indicators** (meters/RTD thermocouple/ thermistor sensors/ probes) Thermometers Timers Voltmeters Volt-Ohm Meters Volume Waveform Generators Welders X-Y Recorders

...and much more. Don't see it? Call us!

*Accreditation may vary by model and manufacturer

On-Site Field Calibration Services

A2LA Accredited for On-Site Calibration

...and much more. Don't see it? Call us!

Amplifiers Bore Gages Calipers **Chamfer & Hole Check Gages Chart Recorders Concentricity Gages** CMMs (Verification Only) Contour/Contracer Systems **Crimping Tools** Cylindricity Measuring Machines Flatness **Force Gages** Freezers **Gage Block Comparators** GO/NO-GO Gages Hardness Testers **Height Gages ID/OD** Comparators Indicators Laser Micrometer Systems Levels LVDT Probes and Readouts Micrometers Microscopes (Metallographic/Metallurgical)

Multimeters **Optical & Video Comparators Optical Shaft Measurement Systems** Ovens Panel Meters Pin Gages Class ZZ Portable Arm CMMs Precision Hand Tools-all Pressure Gages Protractors Radar Guns **Roundness Measuring Machines** Snap Gages Stop Watches Super Micrometers Surface Finish Machines Surface Plates **Temperature & Humidity Recorders** Thermocouple Systems **Tool Makers Measuring Microscopes** Torque Calibration Systems **Torque Wrenches** Universal Measuring Machines Vacuum Gages Vision Systems

Dimensional & Electronic Gage Repair Services

Factory Trained and Certified Repair Services. Send Everything to One Place!

MSI Viking has one of the largest precision instruments Repair Lab in the southeast US. We use only genuine OEM replacement parts and factory-trained technicians with years of experience. Our repair work and replacement parts are accompanied by a 30-day warranty.

Below is only a partial list of brands and items we repair. Call us if you don't see it!

Dimensional Instruments

Bore Gages Bench Micrometers Calipers Co-ax Indicators **Countersink Gages Depth Gages** Flushness Gages Force Gages **Height Gages Height Masters** I/D Micrometers Indicators Laser Micrometers Lever Heads Linear Scales Levels LVDT Probes/Heads Micro-Hite Micrometers Protractors Precision Levels **Pressure Gages** Snap Gages Surface Testers/Gages Surface Styli/Drive Units **Test Indicators** Thickness Gages **Torque Wrenches Torque Drivers Torque Transducers** Verniers and more!

Electronic Instruments

Servos Circuit Boards Amplifiers Durometers Gauss Meters Indicator Checkers/Calibrators Multimeters Force Gages Load Cells AC/DC Drives Spindle Drives Tachometers Chart Recorders Counters Flow Controllers Level Controllers Pressure Controllers **Signal Conditioners** Timers **Temperature Controllers** Meg ohmmeters Oscilloscopes Servo Amplifiers Card Racks Transducers Ultrasonic Controllers and more!

Spindle Repair OEM Quality Repairs Fast Delivery Competitive Pricing

Embedded Calibration Services

Cost Effective • 17025 Accredited • Always Compliant

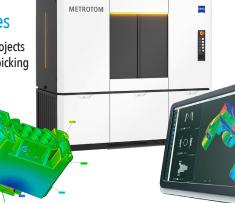
MSI Viking's Embedded Services provides trained and experienced quality personnel right in your facility to manage your lab and gage assets. Services include fully accredited 17025 calibrations and inspections done in-house, reducing gages and parts from leaving your facility and increasing production up time. We also provide complete audit support so that traceability is intact and complete, and your lab is always compliant.

Eliminate QC Staffing & Training In-house Calibrations & Repair Accredited Inspection Faster Turnaround GageCloud Asset Management Preventive Maintenance Customized Flexibility 50+ Years of Experience


Solutions Engineered for Today's Manufacturing Processes

MSI Viking delivers custom solutions that address our customer's goals of reducing costs, increasing production and improving product quality through 'smart' automation. We take advantage of the latest technologies to maximize value and deliver custom measurement solutions, including solutions integrated into existing systems and processes, whether that be through robotics, machine vision, or advanced automation and control systems. Yes, we truly are Your Total Metrology Solution.

Solutions Engineered for Today's Manufacturing Processes



Advanced Metrology Services

Accredited Contract Inspection Services

Fully equipped and accredited labs, we're able take on projects large and small, whether it be a First Article Inspection or picking up the overflow from your regular operations.

Engineering Services

Equipment Services

Popular

Contact and Non-Contact Surface Roughness Hardness Testing Force Testing **Roundness and Form Analysis** Metallurgical Analysis First Article Inspection (FAI) Production Part Approval (PPAP) **Fixture Qualification Reverse Engineering Process Capability Studies** Gage R&R Studies **Custom Fixture Design CMM** Programming CMM Calibration **CMM** Training ... and so much more

Find out more about MSI Viking's comprehensive Metrology Services

msi-viking.com | 864.433.9771