Custom Solutions
 (8)
 Q Inspection
 Total Metrology Solutions

©msi-viking.com

Total Metrology Solutions

MSI Viking is your single-source comprehensive provider of precision metrology systems, services, and custom engineered solutions. We represent more than 100 of the world's leaders in precision measuring instruments, gaging, and process automation. This means providing the solutions you need rather than a limited handful of options.

In addition to precision measurement product sales and support, we are a leading provider of A2LA ISO 17025 accredited lab and on-site calibration and inspection services, and repair services. Our team of experts can also deliver custom engineered solutions leveraging advanced automation and control systems, machine vision, and robotic technologies.

MSI Viking is committed to understanding your needs and providing innovative, practical, on-budget solutions. Turn to MSI Viking for the most complete range of options, answers and expertise.

Because we truly are Your Total Metrology Solution.

Total Metrology Solutions

How Big is a Micron? ($\mu \mathrm{m}$)

$1 \mu \mathrm{~m}=1$ Millionth of 1 Meter
$1 \mu \mathrm{~m}=40$ Millionths of 1 Inch

Total Metrology Solutions

Standard Reference Chart

Standard English Terminology in Terms of an Inch

$$
\begin{gathered}
1.0=\text { One Inch } \\
\hline 0.5=\text { One half of an Inch } \\
\hline 0.100=\text { One Hundredth of an inch } \\
0.001=\text { One thousandth of an inch } \\
0.0001=\text { One ten thousandth of an inch or "a tenth" } \\
\hline 0.00001=\text { Ten Millionths of an Inch } \\
0.000001=\text { One Millionth of an Inch }
\end{gathered}
$$

Metric Terminology in Terms of a Millimeter $1.0=$ One Millimeter
$0.1=100$ Microns
$0.01=10$ Microns

$$
0.001 \text { = } 1 \text { Micron }
$$

Common Conversion Factors

$$
\frac{1^{\prime \prime}=25.4 \mathrm{~mm}}{1 \mathrm{~mm}=.03937^{\prime \prime}}
$$

9001
CERTIFIED

Total Metrology Solutions

METRIC to INCH CONVERSION TABLE

Metric	Inch	Metric	Inch	Metric	Inch	Metric	Inch
0.01	0.00039	0.51	0.02008	1	0.03937	51	2.00787
0.02	0.00079	0.52	0.02047	2	0.07874	52	2.04724
0.03	0.00118	0.53	0.02087	3	0.11811	53	2.08661
0.04	0.00157	0.54	0.02126	4	0.15748	54	2.12598
0.05	0.00197	0.55	0.02165	5	0.19685	55	2.16535
0.06	0.00236	0.56	0.02205	6	0.23622	56	2.20472
0.07	0.00276	0.57	0.02244	7	0.27559	57	2.24409
0.08	0.00315	0.58	0.02283	8	0.31496	58	2.28346
0.09	0.00354	0.59	0.02323	9	0.35433	59	2.32283
0.10	0.00394	0.6	0.02362	10	0.3937	60	2.3622
0.11	0.00433	0.61	0.02402	11	0.43307	61	2.40157
0.12	0.00472	0.62	0.02441	12	0.47244	62	2.44094
0.13	0.00512	0.63	0.0248	13	0.51181	63	2.48031
0.14	0.00551	0.64	0.0252	14	0.55118	64	2.51968
0.15	0.00591	0.65	0.02559	15	0.59055	65	2.55905
0.16	0.0063	0.66	0.02598	16	0.62992	66	2.59842
0.17	0.00669	0.67	0.02638	17	0.66929	67	2.63779
0.18	0.00709	0.68	0.02677	18	0.70866	68	2.67716
0.19	0.00748	0.69	0.02717	19	0.74803	69	2.71653
0.20	0.00787	0.7	0.02756	20	0.7874	70	2.7559
0.21	0.00827	0.71	0.02795	21	0.82677	71	2.79527
0.22	0.00866	0.72	0.02835	22	0.86614	72	2.83464
0.23	0.00906	0.73	0.02874	23	0.90551	73	2.87401
0.24	0.00945	0.74	0.02913	24	0.94488	74	2.91338
0.25	0.00984	0.75	0.02953	25	0.98425	75	2.95275
0.26	0.01024	0.76	0.02992	26	1.02362	76	2.99212
0.27	0.01063	0.77	0.03032	27	1.06299	77	3.03149
0.28	0.01102	0.78	0.03071	28	1.10236	78	3.07086
0.29	0.01142	0.79	0.0311	29	1.14173	79	3.11023
0.30	0.01181	0.8	0.0315	30	1.1811	80	3.1496
0.31	0.0122	0.81	0.03189	31	1.22047	81	3.18897
0.32	0.0126	0.82	0.03228	32	1.25984	82	3.22834
0.33	0.01299	0.83	0.03268	33	1.29921	83	3.26771
0.34	0.01339	0.84	0.03307	34	1.33858	84	3.30708
0.35	0.01378	0.85	0.03346	35	1.37795	85	3.34645
0.36	0.01417	0.86	0.03386	36	1.41732	86	3.38582
0.37	0.01457	0.87	0.03425	37	1.45669	87	3.42519
0.38	0.01496	0.88	0.03465	38	1.49606	88	3.46456
0.39	0.01535	0.89	0.03504	39	1.53543	89	3.50393
0.40	0.01575	0.90	0.03543	40	1.5748	90	3.5433
0.41	0.01614	0.91	0.03583	41	1.61417	91	3.58267
0.42	0.01654	0.92	0.03622	42	1.65354	92	3.62201
0.43	0.01693	0.93	0.03661	43	1.69291	93	3.66141
0.44	0.01732	0.94	0.03701	44	1.73228	94	3.70078
0.45	0.01772	0.95	0.0374	45	1.77165	95	3.74015
0.46	0.01811	0.96	0.0378	46	1.81102	96	3.77952
0.47	0.0185	0.97	0.03819	47	1.85039	97	3.81889
0.48	0.0189	0.98	0.03858	48	1.88976	98	3.85826
0.49	0.01929	0.99	0.03898	49	1.92913	99	3.89763
0.5	0.01969	1.00	0.03937	50	1.9685	100	3.937

Total Metrology Solutions

Gagemaker's Tolerance Chart [ANSI/AMSE B89.1.5]* INCH

Diameter Range Above-Including	XXX	XX	X	Y	Z	ZZ
.010"-.825"	.000010"	.000020"	.000040"	.000070"	.0001"	.0002"
.825"-1.510"	.000015"	.000030"	.000060"	.000090"	.00012"	.00024"
1.510"-2.510"	.000020"	.000040"	.000080"	.00012"	.00016"	.00032"
2.510"-4.510"	.000025"	.000050"	.0001"	.00015"	.0002"	.0004"
4.510"-6.510"	.000033"	.000065"	.00013"	.00019"	.00025"	.0005"
6.510"-9.010"	.000040"	.000080"	.00016"	.00024"	.00032"	.00064"
9.010"-12.010"	.000050"	.0001"	.0002"	.0003"	.0004"	.0008"

Gagemaker's Tolerance Chart [ANSI/AMSE B89.1.5]*

METRIC

Diameter Range Above-Including	XXX	XX	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{Z Z}$
$.254 \mathrm{~mm}-\mathbf{2 0 . 9 6 m m}$.00025 mm	.00051 mm	.00102 mm	.00178 mm	.00254 mm	.00508 mm
$\mathbf{2 0 . 9 6 \mathrm { mm } - 3 8 . 3 5 \mathrm { mm }}$.00038 mm	.00076 mm	.00152 mm	.00229 mm	.00305 mm	.00610 mm
$\mathbf{3 8 . 3 5 \mathrm { mm } - 6 3 . 7 5 \mathrm { mm }}$.00051 mm	.00102 mm	.00203 mm	.00305 mm	.00406 mm	.00813 mm
$\mathbf{6 3 . 7 5 \mathrm { mm } - 1 1 4 . 5 5 \mathrm { mm }}$.00064 mm	.00127 mm	.00254 mm	.00381 mm	.00508 mm	.01016 mm
$\mathbf{1 1 4 . 5 5 \mathrm { mm } - 1 6 5 . 3 5 \mathrm { mm }}$.00084 mm	.00165 mm	.00330 mm	.00483 mm	.00635 mm	.01270 mm
$\mathbf{1 6 5 . 3 5 \mathrm { mm } - \mathbf { 2 2 8 . 8 5 m m }}$.00102 mm	.00203 mm	.00406 mm	.00610 mm	.00813 mm	.01626 mm
$\mathbf{2 2 8 . 8 5 m m - 3 0 5 . 0 5 \mathrm { mm }}$.00127 mm	.00254 mm	.00508 mm	.00762 mm	.01016 mm	.02032 mm

[^0]
Measurement System Characterization

Location (Average Measurement Value vs. Actual Value)					
Stability	The ability of a measurement system to produce the same values over time when measuring the same sample.				
Accuracy	A measure of the distance between the average value of the measurement of a part and the True, certified, or assigned value of a part. Also referred to as bias.				
Linearity	The consistency of accuracy (bias) over the range of measurement; a slope of one (unity) between mea- sured and true value is perfect.				
Variation (Spread of Measurement Values - Precision)		$	$	Repeatability	The consistency of a single appraiser to measure the same part multiple times with the same measure- ment system; it is related to the standard deviation of the measured values.
:---	:---				
Reproducibility	Assesses whether different appraisers can measure the same part/sample with the same measurement device and get the same value.				
Resolution	The ability of a measurement system to discriminate between measurement values. The consistency of different appraisers in measuring the same part with the same measurement system; it is related to standard deviation of the distribution of appraiser averages.				

The diagram below illustrates the difference between the terms "Accuracy" and "Precision". Efforts to improve measurement system quality are aimed at improving both accuracy and precision.

Requirements

Following are general requirements of all capable measurement systems:

- Statistical stability over time.
- Variability small compared to the process variability.
- Variability small compared to the specification limits (tolerance).
-The resolution, or discrimination of the measurement device must be small relative to the smaller of either the specification tolerance or the process spread (variation). As a rule of thumb, the measurement system should have resolution of at least $1 / 10$ th the smaller of either the specification tolerance or the process spread. If the resolution is not fine enough, process variability will not be recognized by the measurement system, thus blunting its effectiveness.

Total Metrology Solutions

Basic Surface Finish

PROFILE	
Pt	Sum of Height of the largest profile peak height and largest profile valley in a evaluation length
Pa	Profile average arithmetic average of absolute values of the roughness profile ordinates
Pv	Depth of the lowest profile valley of the Profile curve in one sampling length
Pp	Height of the highest profile peak of the Profile curve in one sampling length
PSm*	Mean Width Of Profile Elements arithmetic mean value of the widths of profile elements of the Profile
Wt	Sum of Height of the largest Waviness profile peak height and largest Waviness valley in the evaluation length
Wp	Largest waviness profile peak in a sampling length
Wa	Waviness Average arithmetic average of absolute values of the waviness profile ordinates
Wsm	Mean Width Of Waviness Profile Elements arithmetic mean value of widths of waviness profile elements and waviness profile
Wq*	Root mean square average of the waviness profile ordinates
Ra	Roughness average arithmetic average of absolute values of the roughness profile ordinates
Rz	Single Roughness Depth vertical distance between the highest peak and deepest valley within a sampling length
Rmax	Maximum Roughness Depth largest single roughness depth within evaluation length RsmMean width of profile elements arithmetic mean value of widths of profile elements and roughness profile
Rq (RMS)*	Root mean square average of the roughness profile ordinates

Total Metrology Solutions

Torque Measurement

IN-OZ	G-CM	IN-LB	FT-LB	KG-M	N-M
$\mathbf{4 8}$	3456	3	0.25	0.03458	0.339
$\mathbf{1 9 2}$	13830	12	1	0.1383	1.356
$\mathbf{8 0 0}$	57600	50	4.167	0.5763	5.65
$\mathbf{1 6 0 0}$	115200	100	8.334	1.1526	11.3
$\mathbf{3 2 0 0}$	230400	200	16.668	2.3052	22.6

Torque Conversion Multipliers

	IN-OZ	G-CM	IN-LB	FT-LB	KG-M	N-M
in-oz	1	72.01	0.0625	0.005208	0.0007203	0.007063
g-cm	0.01389	1	0.000868	0.00007233	0.00001	0.00009808
in-lb	16	1152	1	0.08333	0.01153	0.113
$\mathrm{ft}-\mathrm{lb}$	192	3456	12	1	0.1383	1.356
$\mathrm{~kg}-\mathrm{m}$	1388	99960	86.77	7.231	1	9.805
$\mathrm{n}-\mathrm{m}$	141.6	10200	8.85	0.7375	0.102	1

Force Measurement					
0ZF	GF	LBF	KGF	N	
$\mathbf{1 6}$	453.6	1	0.4536	4.448	
$\mathbf{8 0}$	2268	5	2.268	22.24	
$\mathbf{1 6 0}$	4536	10	4.536	44.48	
$\mathbf{4 0 0}$	11340	25	11.34	111.2	
$\mathbf{8 0 0}$	22680	50	22.68	222.4	
$\mathbf{1 6 0 0}$	45360	100	45.36	444.8	
$\mathbf{3 2 0 0}$	20720	200	90.72	889.6	
$\mathbf{8 0 0 0}$	226800	1000	226.8	2224	
$\mathbf{1 6 0 0 0}$	453600	453.6	4448		

Force Conversion Multipliers						
	OZF		GF	LBF	KGF	
OZF	1	28.35	0.0625	0.02835	0.278	
GF	0.03527	1	0.002205	0.001	0.009806	
LBF	16	453.6	1	0.4536	4.448	
KGF	35.27	1000	2.205	1	9.806	
N	3.597	102	0.2248	0.102	1	

ACCREDITED
CERTIFIED

Form Parameter Tolerances

\square
Straightness, ISO 1101
The tolerance zone is limited in the measuring plane by two parallel straight lines a distance t apart.

Cylindricity, ISO 1101
The tolerance zone is limited by two coaxial cylinders a distance t apart.

The tolerance zone is limited by two parallel planes a distance t apart and inclined at the specified angle to the surface.

Parallelism, ISO 1101
The tolerance zone is limited in the measuring plane by two straight lines a distance t apart and parallel to the datum.
The tolerance zone is limited by two parallel planes a distance t apart and symmetrically disposed to the median plane with respect to the datum axis or datum plane.

Concentricity/Coaxiality, ISO 1101
The tolerance zone is limited by a cylinder of diameter t, the axis of which coincides with the datum axis.

If the tolerance value is preceded by the sign, the tolerance zone is limited by a cylinder of diameter t, the axis of which is theoretically in the exact position of the toleranced line.

$\boxed{4}$Total run-out, ISO 1101

The tolerance zone is limited by two parallel planes a distance t apart and perpendicular to the datum axis.

Profile any surface, ISO 1101
The tolerance zone is limited by two surfaces enveloping spheres of diameter t, the centres of which are situated on a surface having the true geometrical form.

			səse9 əlqon səuə60｜er						s｜ctrew ग！seg		s！erəw uonssued							
	$\underset{\text { ZOL }}{\substack{101.69 Z \\ \text { wni\|lgon }}}$		$960^{\circ} \angle 9 Z$ แก！யшəョ U」 001			$\begin{gathered} 0 \angle 0 \angle \nabla z \\ \text { wn!\|әy10g } \\ \text { Y\& } \end{gathered}$		190 ®ャて un！̣！uauv U \forall G6	$+90^{\circ} \downarrow \triangleright 乙$ un！uopnld nd 76	$8 \pm 0^{\circ} \angle \varepsilon \tau$ mn！̣unden dN $\varepsilon 6$	620＇8ะて un！̣ue»n		8\＆0＇Z६て யก！̣OL1 41 06	8てO L LZて un！u！！！ヤV つV 68	səฺ．ฺ әр！u！̣｜	ssew әu	$\begin{aligned} & \text { enoory } \\ & \text { eN } \end{aligned}$	
		† 86.891 un！｜｜nप1 W」 69	6乌で 191 แก！ 9 －ヨ コヨ 89			GZ6．891 un！̣ıə \qquad			$\begin{aligned} & \substack{\text { 9ع.os! } \\ \text { mпиeues } \\ \text { UUS }} \end{aligned}$				9110カー แก！ฺว \qquad 89		รəฺฆร әр！иециие 7	109	$u \kappa s$ sequinN ग！யolv	
umouyun แn！ŋoounun onn 8LL	$\underset{\text { LLL }}{\substack{\text { umouyun } \\ \text { unndasunun }}}$	$\begin{gathered} \substack{[86 z] \\ \text { un!uоел!7 } \\ \Lambda 7_{91 L}} \end{gathered}$	un！uagdunun dn Sレレ		umouyun wn！̣цunun $7 \cap \bigcap_{\varepsilon น}$				$\mathrm{HW}_{601}^{\substack{[89 z] \\ \text { unuoupow }}}$	$\underset{801}{\substack{[69 z] \\ \text { ungsesen }}}$	$\begin{gathered} \begin{array}{l} \text { [ngz] } \\ \text { unnuog } \\ 48 \end{array} \\ \text { LOL } \end{gathered}$		$\begin{gathered} \substack{\text { Lz92] } \\ \text { un!uqna } \\ \text { Q@ }} \end{gathered}$		ع0l－68	9Z0＇9ZZ wnipey ey 88	mi！̣ues」」」 $\angle 8$	
$\begin{aligned} & \begin{array}{l} 810 \text { zzz } \\ \text { uopey } \\ \text { UC } \\ 98 \end{array} \end{aligned}$		［286．802］ un！uolod Od ヤ8	086．802 чınus！̣a		モ8どャロて un！｜｜еч⿺		L96． 96 plos $\mathrm{n} \forall$ 62	980．961 minulleld $1-1$ 82		をて＇061 muluso SO 92	LOZ＇981 un！uәபप्ன əy GL	$78 \cdot \varepsilon 81$ uə！s6un」 M †L	$8 \div 6.081$ unjelues E \perp εL	678．8L1 سn！ufer H ZL	IL－LS	8てモ゙ \llcorner に unlueg eg 9 G	G06てと1 uniseo \qquad sg	
			$\mathrm{qS}_{\text {Ls }}^{\substack{09 \cdot L \cdot L L \\ \text { Ruouluy }}}$	$\underbrace{1+2814}_{0 \mathrm{~S}}$	818ナレト un！̣pu UI 67	ルーがてい un！upes pO 8t		で901 Pd 97	906^{\prime} ZOL un！pouy पУ St	$\underbrace{\substack{\text { uniterniny } \\ \text { ny }}}_{t \rightarrow}$			906 て6 wn！qo！ qN 17		906.88 سn！Ill 6ε	$\begin{gathered} \begin{array}{c} \text { z9. } 28 \\ \text { winuons } \\ 1 S_{8} \end{array} \\ 8 \end{gathered}$		
		$\downarrow \varepsilon$			\＆ZL＇69 шก！！！es セכ 1ε	$\begin{gathered} 8 \varepsilon: 59 \\ ⿱ 艹 \mathrm{siz} \\ U Z_{0 \varepsilon} \end{gathered}$	$9 \succ \mathcal{C}^{\prime}$ \＆9 ıəddoう \qquad no $6 Z$	ع69．89 •วヤ！ N IN 87	ع\＆6．89 „eqoう \circ LZ	૬৮৪＇乌s uod 92	$8 \varepsilon 6^{\prime} \downarrow G$ əsəue6uew sZ					$\underbrace{\substack{820 \cdot 0\rangle \\ \text { un!je } \\ e \int_{0}}}_{0 z}$	$\underbrace{\substack{8606 \varepsilon \\ \text { mn!sselod }}}_{61}$	
				$\underbrace{980 \cdot 82}_{t l}$		$\begin{aligned} & \text { gz } \\ & \text { gII } \\ & \mathrm{ll} \end{aligned}$	$\begin{aligned} & \text { gl } \\ & \text { gI } \\ & \text { ut } \end{aligned}$	01	$-\frac{8}{111 \wedge}$	${ }_{8}$	$\begin{gathered} \text { gL } \\ \underset{L I I I}{L} \end{gathered}$	$\begin{gathered} 89 \\ \text { gi^ } \\ 9 \end{gathered}$	$\begin{aligned} & \text { gG } \\ & \text { g } \\ & \mathbf{g} \end{aligned}$	$\begin{aligned} & \text { 9t } \\ & \text { GNI } \\ & \vdots \end{aligned}$	$\begin{aligned} & 9 \varepsilon \\ & \text { 9IIII } \\ & \varepsilon \end{aligned}$	$\underset{\text { 乙し }}{\substack{\text { sos.vz } \\ \text { munsouben }}}$	$066 . Z 乙$ wnipos EN い	
		$666^{\circ} \mathrm{G}$ uebKxo 0 8	N_{2}	LIO＇Z1 uoques \bigcirc 9	$148^{\circ} 01$ uolog											$\stackrel{\begin{array}{c} 206 \\ \text { unn!\|lNeg } \\ \theta g \end{array}}{\square}$		
	$\begin{gathered} \forall L \\ \forall I I \Lambda \\ \angle L \end{gathered}$	$\begin{aligned} & \forall 9 \\ & \forall I \Lambda \\ & 91 \end{aligned}$	$\begin{aligned} & \forall G \\ & \forall \Lambda \\ & \text { gı } \end{aligned}$	$\begin{aligned} & \forall \downarrow \\ & \forall \wedge I \\ & \forall ৷ \end{aligned}$	$\begin{aligned} & \forall \varepsilon \\ & \forall I I I \\ & \varepsilon I \end{aligned}$							－	－	\square		$\begin{gathered} \forall z \\ \forall I I \\ z \end{gathered}$		
$\begin{gathered} \forall 8 \\ \forall \\| I \Lambda \\ 8 \downarrow \end{gathered}$						STUD	Wつ	503	BJ	［10．	d						$\forall l$	

MSI \oplus

Total Metrology Solutions

[^0]: *Reference Only

